Adaptive Incremental Mixture Markov chain Monte Carlo

نویسندگان

  • Florian Maire
  • Nial Friel
  • Antonietta Mira
  • Adrian E. Raftery
چکیده

We propose Adaptive Incremental Mixture Markov chain Monte Carlo (AIMM), a novel approach to sample from challenging probability distributions defined on a general state-space. Typically, adaptive MCMC methods recursively update a parametric proposal kernel with a global rule; by contrast AIMM locally adapts a non-parametric kernel. AIMM is based on an independent Metropolis-Hastings proposal distribution which takes the form of a finite mixture of Gaussian distributions. Central to this approach is the idea that the proposal distribution adapts to the target by locally adding a mixture component when the discrepancy between the proposal mixture and the target is deemed to be too large. As a result, the number of components in the mixture proposal is not fixed in advance. Theoretically we prove that AIMM converges to the correct target distribution. We also illustrate that it performs well in practice in a variety of challenging situations, including high-dimensional and multimodal target distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mixture-Based Approach to Regional Adaptation for MCMC

Recent advances in adaptive Markov chain Monte Carlo (AMCMC) include the need for regional adaptation in situations when the optimal transition kernel is different across different regions of the sample space. Motivated by these findings, we propose a mixture-based approach to determine the partition needed for regional AMCMC. The mixture model is fitted using an online EM algorithm (see Andrie...

متن کامل

Computing Normalizing Constants for Finite Mixture Models via Incremental Mixture Importance Sampling (IMIS)

This article proposes a method for approximating integrated likelihoods in finite mixture models. We formulate the model in terms of the unobserved group memberships, z, and make them the variables of integration. The integral is then evaluated using importance sampling over the z. We propose an adaptive importance sampling function which is itself a mixture, with two types of component distrib...

متن کامل

An Adaptive Sequential Monte Carlo Sampler

Sequential Monte Carlo (SMC) methods are not only a popular tool in the analysis of state–space models, but offer an alternative to Markov chain Monte Carlo (MCMC) in situations where Bayesian inference must proceed via simulation. This paper introduces a new SMC method that uses adaptive MCMC kernels for particle dynamics. The proposed algorithm features an online stochastic optimization proce...

متن کامل

Adaptive Markov chain Monte Carlo for Bayesian Variable Selection

We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016